Ogawa-Saito-Bernard Laboratory / Ichikawa Laboratory

Fracture and Reliability Research Institute, Graduate School of Engineering, Tohoku University

Safety Science for Materials 4 and Components by Surface and Interface Control

Higher adhesion strength

Elucidation and control of **TBC** degradation mechanism

Dye-sensitised solar cell development

Nondestructive evaluation for TBC by means of high-frequency wave

Re-heat and regeneration for used turbine disk

Establishment of safety science research for the energy and environmental material

Evaluation of aging degradation Degradation mechanism Safety and reliability assurance Remaining life assessment

Whole new way to fabricate polymer thick deposit

Prototype of specimen

TEM interface observation result

Deposition mechasm study of cold spray

Blade

Used **Microstructure**

Evaluation of aging degradation for gas turbine blade

1 μm 2 μm /

Cantilever: 120 x 6 x 15 µm Spring constant: 80±3 N/m Displacement measurement

Loading

accuracy: ±72 nm Area measurement accuracy: $4.7 \times 10^{-15} \text{ m}^{-2}$

Micro-scale mechanical evaluation method for cold-spray deposition

Development of cold spray simulation method

Elucidation of micro structure

Particle deformation behavior In cold spray process

Contact:

Prof. K. Ogawa 022-795-7542 kogawa@rift.mech.tohoku.ac.jp Assoc. Prof. Y. Ichikawa 022-795-4826 ichikawa@rift.mech.tohoku.ac.jp